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Abstract
We investigate the ground states of classical Heisenberg spin systems which
have point group symmetry. Examples are the regular polygons (spin rings) and
the seven quasi-regular polyhedra including the five Platonic solids. For these
examples, ground states with special properties, e.g. coplanarity or symmetry,
can be completely enumerated using group-theoretical methods. For systems
having coplanar (anti-) ground states with vanishing total spin we also calculate
the smallest and largest energies of all states having a given total spin S. We find
that these extremal energies depend quadratically on S and prove that, under
certain assumptions, this happens only for systems with coplanar S = 0 ground
states. For general systems the corresponding parabolas represent lower and
upper bounds for the energy values. This provides strong support and clarifies
the conditions for the so-called rotational band structure hypothesis which has
been numerically established for many quantum spin systems.

PACS numbers: 75.10.Hk, 75.50.Xx

1. Introduction

The study of small interacting spin systems is not only of theoretical interest but also of
importance for the experimental investigation of recently synthesized magnetic molecules
[1–4]. An exact calculation of the thermal expectation values of the relevant quantum
observables and other quantities such as correlation functions is possible only in very few
cases. Given this situation, a classical treatment yields a first approximation for individual
spins s with s � 1 which is often astonishingly good, as well as bounds for the exact
quantum values (cf Berezin/Lieb-inequalities). It is also valuable as a guide for developing
approximation schemes for attacking the quantum theoretical problem.
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One of the fundamental characteristics of a system is its ground state(s) and the
corresponding ground state energy. The problem of determining the exact classical ground
state has been considered for a long time, see e.g. [5, 6], but has only been solved for a few
special systems. These include arrays of interacting spins occupying the sites of a regular
N-polygon (spin rings) with nearest-neighbour coupling constant J > 0 (antiferromagnetic in
our convention). The corresponding ground state energy is

Emin = −2JNs2 (even N) (1)

corresponding to an alternating configuration of spin orientations in the N-polygon. The
analogous result

Emin = 2JNs2 cos((N − 1)π/N) (odd N) (2)

does not appear to be in the literature, although it is easily established, see (77). Another class
of systems where the classical ground states are easily determined are the so-called bi-partite
systems, which can be divided into two subsets A and B such that there are only interactions
(with a positive coupling constant J ) between spins a ∈ A and b ∈ B. In this case any
anti-parallel configuration between A and B will minimize the energy. The regular polygons
with even N considered above and the cube are simple examples of bi-partite systems.

Recently, the exact classical ground state of a system consisting of N = 30 spins
occupying the vertices of an icosidodecahedron [7, 8] has been determined [9]. The method
employed there can be applied to any system which can be decomposed into a set of triangles
without common edges and which is 3-colourable. Examples are the octahedron (as mentioned
in [9]) and the cuboctahedron (this is obtained by joining the midpoints of the edges of a cube
with their nearest neighbour, see section 6.4.3). All these systems have the following property:
among their ground states are coplanar ground states with S = 0. These can be modified to
remain ground states in the presence of a magnetic fieldH, the corresponding energy depending
quadratically on H, cf [9]. The construction of the modified ground states is similar to folding
of an umbrella and will be referred to as the ‘umbrella construction’. This yields a definite
prediction for the magnetization versus magnetic field plot at low temperatures. It should have
a constant slope until a critical magnetic field Hc is applied, and for H > Hc the magnetization
is saturated.

In the present paper we will derive a further consequence for systems having (among
all ground states) coplanar ground states with S = 0. The same formal equation as that
characterizing the ground state in the presence of a magnetic field occurs for the ground
state subject to the extra constraint that the square of the total spin assumes a given value.
Generalizing the solution in [9] we obtain by the umbrella construction a whole family of
states assuming the minimal energy Emin(S). It turns out that for these systems the function
Emin(S) is quadratic in S of the form

Emin(S) = j − jmin

N
S2 + jminN. (3)

Here j is the row sum
(
j = ∑

νJµν

)
of the adjacency matrix J defined below. J is chosen in

such a way that j does not depend on µ, and jmin is the smallest eigenvalue of J. Conversely,
the existence of a lower parabola (3) implies the coplanarity of some of the S = 0 ground
states, see theorem 3 for details. We do not claim that the states constructed from the coplanar
S = 0 ground states are unique. Of course, in general there will be many ground states in
the presence of a magnetic field or for given S which are different from those of the umbrella
construction.

Analogous results hold for the maximal eigenvalue Emax(S) of systems with S = 0
coplanar anti-ground states. Hence these systems show an exact rotational band structure
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(RBS) which has been conjectured to apply for a general class of quantum spin systems [10].
Thus our findings strongly support that conjecture in the sense that the considered class of
spin systems has exact RBS-parabolas in the classical limit s → ∞. On the other hand we
have found classes of systems which deviate from the exact RBS-parabolas, especially for
small values of S, see section 6. Hence our work may be viewed as a first step towards an
understanding of the conditions for the occurrence of RBS-parabolas. We will call systems,
which exactly attain their lower RBS-parabola (3), ‘parabolic’. For general systems the
corresponding parabolas represent lower and upper bounds for the energy values, as will be
proved in section 3. Sometimes these bounding parabolas will be very good approximations
of the boundaries of the energy spectrum even for non-parabolic systems.

Other questions arise in connection with spin systems having coplanar S = 0 ground
states. Has every classical spin system coplanar ground states or even coplanar S = 0 ground
states? If not, what is the criterion for having coplanar ground states? Are there systems with
both coplanar and non-coplanar ground states? We do not have complete answers to these
questions, but we can show the following:

• In general the spin triangle with arbitrary coupling constants J1, J2, J3 has only coplanar
ground states with S > 0.

• A spin system which we call ‘pentagonal star’ has a non-coplanar ground state with S > 0.
The existence of coplanar states with the same energy can be excluded on the basis of
numerical calculations.

• For certain systems the existence of coplanar, symmetric ground states can be excluded.
By ‘symmetric’ we mean roughly that the state has the same symmetry as the spin system
itself (for details see section 5).

• Other systems, such as the dodecahedron and the icosahedron, have symmetric non-
coplanar ground states and apparently no coplanar ones. These ground states can
be geometrically visualized in terms of what is known [7] as the ‘great stellated
dodecahedron’ and the ‘great icosahedron’, respectively.

• The tetrahedron has a symmetric non-coplanar ground state with S = 0 and a variety of
other non-symmetric ground states including coplanar ones, all of the same energy.

• The same is true for other systems with full permutational symmetry (‘N-pantahedron’),
except that these systems do not have symmetric ground states for N > 4.

• The cuboctahedron has a lower RBS-parabola but interestingly it has two symmetric
ground states with S = 0, a coplanar one and a non-coplanar one. The latter corresponds
to a degenerate stellated figure which we have not found in the literature and which is
composed of four stars of David, see section 6.4.

Thus we are faced with a surprising variety of possibilities of ground states of different
types. The main open problem is to rigorously prove the existence of spin systems without
coplanar ground states. It appears that quantitative statements can be made mainly if symmetric
states are concerned, since in this case we may use standard methods of group theory, in
particular representation theory of the point groups.

The paper is organized as follows: sections 2 and 3 contain the general definitions
and results which are independent of symmetry assumptions. The main result of section 3
is that systems with coplanar S = 0 ground states have RBS-parabolas (theorem 2) and its
converse (theorem 3). These parabolas represent lower and upper energy bounds even for non-
parabolic systems (theorem 1). In section 4 we address questions of extension of ground states
to larger systems and ‘higher order frustration’. Section 5 introduces symmetry assumptions
and the definition and simple properties of symmetric states. This machinery is applied
in section 6 to the investigation of particular examples. We consider the general triangle
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which is generically non-parabolic as well as classes of symmetric spin systems including
the quasi-regular polyhedra. We construct symmetric ground states from certain irreducible
representations of the respective point groups. The paper closes with a summary.

2. Notation, definitions and general results

We consider as the phase space of the classical spin system the N-fold product of the unit
sphere S2. Instead of using canonical coordinates we will denote a state by a sequence s of
unit vectors sµ,µ = 1, . . . , N with components si

µ, i = 1, 2, 3. The total spin is S ≡ ∑
µsµ

with components Si , i = 1, 2, 3. If not indicated otherwise, the abstract letters i, j, . . . will
always be (upper) indices and there is no danger of confusion with the square of a vector, e.g.
S2. We will use bracketed indices to denote by, say, x(i) the vector with the components xi ,
similarly for matrices. For example, the n × m matrix A(i)(j) consists of n row vectors Ai(j)

and of m column vectors A(i)j .
If not mentioned otherwise, the Hamilton function (or ‘energy’) will be of the form

H0(s) =
∑
µν

Jµνsµ · sν . (4)

If a magnetic field �H is to be included we add a Zeeman term and obtain

Hh = H0 − h · S (5)

where h ≡ √
s(s + 1)gµB

�H contains the common combination of the spectroscopic splitting
factor g and the Bohr magneton µB and is scaled with the function

√
s(s + 1) of the

corresponding spin quantum number s.
Note that the exchange parameters Jµν are not uniquely determined by the Hamiltonian

H0 via (4). Different choices of the Jµν leading to the same H0 will be referred to as
different ‘gauges’. We will adopt the following gauges. First, the antisymmetric part of J

does not occur in the Hamiltonian (4). Hence we will follow common practice and choose
Jµν = Jνµ. Thus the Jµν can be considered as the entries of a real symmetric matrix J.
Second, since sµ · sµ = 1 we may choose arbitrary diagonal elements Jµµ without changing
H0, as long as their sum vanishes, Tr J = 0. The usual gauge chosen throughout the literature
is Jµµ = 0, µ = 1, . . . , N, which will be called the ‘zero gauge’. In this paper, however,
we will choose another gauge, to be called the ‘homogeneous gauge’, which is defined by the
condition that the row sums

Jµ ≡
∑

ν

Jµν (6)

will be independent of µ. Note that the eigenvalues of J may non-trivially depend on the
gauge. We found that the eigenvalues of J are only relevant for energy estimates if the row
sum of J is constant. This would restrict the applicability of large parts of our theory if we
adopt the zero gauge. However, by introducing the homogeneous gauge we can apply our
results to a very general class of systems.

The quantity

Nj ≡
∑
µν

Jµν (7)

is gauge independent. If exchange parameters satisfying J̃ µν = J̃ νµ are given in the zero
gauge, the corresponding parameters Jµν in the homogeneous gauge are obtained as follows:

Jµν ≡ J̃ µν for µ �= ν (8)
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Jµµ ≡ j − J̃ µ. (9)

It follows that

j = Jµ =
∑

ν

J̃ µν + Jµµ. (10)

A spin system is called antiferromagnetic (AF) iff all Jµν � 0 and not all Jµν = 0 for
µ �= ν. A system is called connected iff its spin sites cannot be decomposed into two disjoint
classes, say A and B, such that Jµν = 0 if µ ∈ A and ν ∈ B.

In the special case where all exchange parameters Jµν, µ �= ν are 0 or J , the system can
be essentially represented by its graph �. A graph � = (V, E) consists of a set of ‘vertices’
V and a set of ‘edges’ E ⊂ [V]2. Here [V]2 denotes the set of subsets of V with exactly two
elements. In our case, the vertices are the spin sites, V = {1, . . . , N}, and the edges represent
interacting pairs of spins. For spin systems it is appropriate to consider only graphs without
loops and multiple edges, as we do in this paper following, e.g., [11].

There are different ways to graphically represent a spin state s. For specific spin systems,
e.g. magnetic molecules, the spin sites µ ∈ V are embedded into the physical 3-space and
represented by vectors rµ. One way would be to attach the vectors sµ as small arrows to the
sites given by rµ, see section 6.4.3 for one example. However, when using this representation
it is difficult to visualize the structure of the sµ in spin space. Hence we will mostly employ
another method of representation: we draw the N vertices in spin space according to the unit
vectors sµ and join them with lines according to the edges of the original spin graph �. Thus
we obtain a graph isomorphic to � which contains additional information about the considered
spin configuration.

In graph theory the set of edges is often represented by a matrix called the adjacency
matrix. We will use this name also for the matrix J in the general case of different exchange
parameters. There exists an extended literature about the connection between the structure of
a graph and the spectrum of J, see, for example [12], where also applications in chemistry and
physics are mentioned.

The graph � is called complete if E = [V]2. We will also call the corresponding spin
system where any two spins interact with equal strength, a pantahedron.

Being symmetrical, J has a complete set of N real, ordered eigenvalues jmin, . . . , jmax

which are counted according to their multiplicity. One of them is the row sum j with
 ≡ 1√

N
(1, 1, . . . , 1) as the corresponding eigenvector. For connected AF-systems, j will

be non-degenerate and equals the largest eigenvalue, j = jmax > 0, by the theorem of
Frobenius–Perron. For general AF-systems we have the following result:

Lemma 1. For AF-systems

jmin < 0 < j. (11)

Proof. We have

Nj =
∑
µ,ν

Jµ,ν =
∑

µ

Jµ,µ +
∑
µ �=ν

Jµ,ν. (12)

The first sum of the rhs equals Tr J and hence vanishes. The second sum is positive due to
the definition of AF-systems, hence j > 0. If jmin � 0, all eigenvalues jµ would be � 0
and hence Tr J = ∑

µjµ > 0, since at least the eigenvalue j is positive. This contradicts
Tr J = 0. �

It will be convenient to rearrange the indices such that j = j0 and the remaining
eigenvalues j1, . . . , jN−1 are ordered according to their size. Hence jN−1 will always denote
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the largest eigenvalue of J other than j , counted once. It may happen that jN−1 = jmax, for
example if j < jmax or if j = jmax is at least twofold degenerate. Since the eigenvalue jN−1

will often occur in our paper, especially for AF-systems, we will write jN−1 ≡ jmaxi.
Sums over α = 1, . . . , N −1 but excluding α = 0 will be denoted by

∑′. We will denote
the αth normalized eigenvector of J by C(ν)

α , i.e.∑
ν

JµνC
ν
α = jαC

µ
α µ, α = 0, . . . , N − 1 (13)

and ∑
µ

C
µ
α C

µ

β = δαβ α, β = 0, . . . , N − 1 (14)

where we also allow for the possibility of choosing complex eigenvectors.
We note in passing that J in the homogeneous gauge is essentially the Hamilton operator of

the corresponding quantum spin system, restricted to the subspace of total magnetic quantum
number M = Ns − 1. Thus there is an unexpected connection between ‘weakly symmetric’
classical states to be defined below and quantum eigenstates of the Hamiltonian lying in the
mentioned subspace.

The equations of motion resulting from the Hamiltonian (4) are

d

dt
sµ =

(∑
ν

Jµνsν

)
× sµ. (15)

Using Jµν = Jνµ one can immediately show that the total spin vector S is a constant of motion.
We now will define various kinds of special states. A stationary state will be one with

d
dt

sµ = 0, for all µ = 1, . . . , N . According to (15), this is equivalent to∑
ν

Jµνsν = κµsµ (16)

for some real numbers κµ,µ = 1, . . . , N . Equation (16) can also be viewed as the solution of
the problem to seek states with vanishing variation of the quadratic form∑

µν

Jµνsµ · sν (17)

subject to the constraints sµ · sµ = 1, µ = 1, . . . , N . The κµ then appear as Lagrange
parameters of this variational problem.

Geometrically, (16) means that for a stationary state each spin vector is proportional to the
‘centre of mass’ of its neighbours. As for general Hamiltonian systems, the stationary states
are just the critical points of the Hamilton function, i.e. those points where the gradient of H0

vanishes. In particular, the states s with minimal H0(s) = Emin or maximal H0(s) = Emax

are stationary. The former will be called ground states, and the latter anti-ground states. For
connected AF-systems the anti-ground state is always of the form sµ = e for all µ = 1, . . . , N ,
i.e. all spins are aligned parallel to an arbitrary unit vector e (ferromagnetic ordering). In this
case jmax = j and Emax = Nj .

Moreover, we will consider the relative ground states (relative anti-ground states),
which are defined as the states of minimal (maximal) energy among all states satisfying(∑

ν sν

)2 = S2. Let Emin(S) denote the energies of the relative ground states, and Emax(S)

that of the relative anti-ground states. Again, the relative ground states and anti-ground states
are among the solutions of the variational problem corresponding to (17) with the additional
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constraint
(∑

νsν

)2 = S2 > 0. If the extra Lagrange parameter is called χ , we obtain the
condition, analogous to (16),∑

ν

Jµνsν = κµsµ + χS for S > 0. (18)

The equations of motion (15) then imply that for states satisfying (18) we have

d

dt
sµ = χS × sµ (19)

i.e., for S > 0 these states are no longer stationary but are precessing around the total spin
vector. This is completely analogous to the precession of stationary states of H0 in the presence
of a magnetic field.

The condition S > 0 in (18) is necessary in order to apply the method of Lagrange
parameters. S = 0 has to be excluded since it would correspond to a critical point of the
constraining function g(s) = (∑

ν sν

)2 − S2, see for example [13]. To cover also the case
S = 0 we consider three constraining equations written in the vector form∑

ν

sν = S0 (20)

where S0 is a fixed vector. Then the above-mentioned problem does not occur. We have three
Lagrange parameters which will be written as the components of a vector L. The resulting
equations are ∑

ν

Jµνsν = κµsµ + L. (21)

Taking the vector product of (21) ×sµ and summing over µ yields  = S × L. If S �=  this
is equivalent to L = χS and we recover (18). For S = 0, however, (18) has to be replaced
by (21).

States satisfying (21) will be called weakly stationary states, since they are stationary in
a rotating frame. Hence relative (anti-) ground states are weakly stationary.

There exists a simple mechanical model for stationary states. Consider a system of N
rigid, massless rods of unit length fixed at the same point (‘pendula’). These rods may be
represented by unit vectors sµ. Between two rods sµ and sν we consider springs satisfying
Hooke’s law with spring constants 2Jµν . Further there is a constant (‘gravitational’) force
F = Fe. By the cosine theorem, |sµ − sν |2 = 2(1 − sµ · sν), hence the potential energy of
our mechanical model will be

V (s) = 1

2

∑
µν

Jµν |sµ − sν |2 − F · S = Nj −
∑
µν

Jµνsµ · sν − F · S. (22)

The equilibrium points of this mechanical system will satisfy the zero-force equation

2
∑
µν

Jµνsν + F = 2κµsµ (23)

where 2κµsµ are essentially the constraining forces exerted on the rigid rods. Moreover, for
equilibrium S will be proportional to the constant force, say F = −2χS, since otherwise
there would be a first-order variation of the potential energy when performing infinitesimal
uniform rotations of the system. It follows that equations (23) and (18) are formally identical.
Summarizing, there is a 1:1 correspondence between the weakly stationary spin states s and
the equilibrium states s of the considered mechanical systems, if the value of the force F runs
through all real numbers. This mechanical model may help the reader to visualize some of the
weakly stationary states to be considered in this paper.
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We can easily obtain the following bounds for the energy of stationary states s:

Lemma 2. Njmin � Emin � H0(s) = ∑
µ κµ � Emax � Njmax. Moreover, if the total spin of

s vanishes we have H0(s) � Njmaxi.

Proof. By definitions, for stationary states we have H0(s) = ∑
µνJµνsν ·sµ = ∑

µκµsµ ·sµ =∑
µκµ. The expectation value of a real, symmetric matrix is bounded by its smallest and largest

eigenvalue, hence

jmin

∑
µ

x2
µ �

∑
µν

Jµνxµxν � jmax

∑
µ

x2
µ. (24)

Choosing xµ = si
µ and summing over i = 1, 2, 3 yields

Njmin �
∑
µνi

Jµνs
i
µsi

ν = H0(s) � Njmax. (25)

By definition we have Emin � H0(s) � Emax. Since Emin = H0(s) for any ground state s,
and every ground state is stationary, (25) implies Njmin � Emin. Arguing analogously with an
anti-ground state s one may show Emax � Njmax.

Now let a stationary state s satisfy
∑

µsi
µ = Si = 0. The latter equation may be viewed to

say that the three vectors si
(µ), i = 1, 2, 3 are orthogonal to the eigenvector of J corresponding

to the eigenvalue j = j0. In the subspace orthogonal to  the largest eigenvalue of J is jmaxi.
Hence H0(s) � Njmaxi in this case. �

The respective bounds of lemma 2 are attained if there exist stationary states where all
κµ = jmin or κµ = jmax, or κµ = jmaxi in the AF case for S = 0. At present, we cannot show
the existence of such states under general conditions but this can be done for some specific
examples. We will call any stationary state with the property that the values of all κµ of (16)
are independent of µ, a weakly symmetric state. If we view the set of components si

µ of a state
s as an N × 3-matrix, the definition of ‘weakly symmetric’ could be rephrased in the way
that all rows of s are eigenvectors of J for the same eigenvalue j̃ . Recall that for stationary
states each spin vector sµ is proportional to the ‘centre of mass’ of the neighbouring spins.
For weakly symmetric states the constant of proportionality will be the same for all spins sµ,
which motivates the wording. Obviously, weakly symmetric (anti-)ground states belong to the
eigenvalue jmin, (jmax). If one takes any three eigenvectors of J with the same eigenvalue to
form the three rows of a matrix, one will not get automatically a weakly symmetric state, since
the N columns need not be unit vectors. In section 5 we will present a construction procedure
which, under certain assumptions, yields (weakly) symmetric states.

Since the energy H0(s) is invariant w.r.t. rotations/reflections in spin space the above-
defined classes of weakly symmetric states, (weakly) stationary states or of (relative) ground
states are also invariant under rotations/reflections.

Another simple property of weakly symmetric ground states is the following:

Lemma 3. Every weakly symmetric state has vanishing total spin if the corresponding
eigenvalue j̃ is different from the row sum j . In particular, every weakly symmetric ground
state of an AF-system has vanishing total spin.

Proof. We obtain
∑

µνJµνsν = j
∑

νsν = jS and
∑

µνJµνsν = j̃
∑

µsµ = j̃S. Hence
j̃ = j or S = . If s is a weakly symmetric ground state of an AF-system, hence j̃ = jmin,
we have jmin < j by lemma 1 and its total spin must vanish. �
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We will call a state s collinear if all its spin vectors are (anti-)parallel to a given vector e,
i.e. sµ = ±e. Due to equation (16), every collinear state is stationary. Further we will call a
state s coplanar if all its spin vectors lie in a plane i.e., if there exists a non-zero 3-vector n

such that n · sµ = 0 for all µ = 1, . . . , N . In section 6 we will show that systems such as the
regular polygon, the pantahedron and the quasi-regular cuboctahedron and icosidodecahedron
admit coplanar weakly symmetric S = 0 ground states. These ground states are important
since one can construct from them a whole family of relative ground states, which show a
rotational band structure. This will be done in the next section.

3. Criteria for parabolicity

Throughout this section we assume the AF case, although some results will have obvious
counterparts for ferromagnetic or general systems. First we will show that the S-resolved
energy spectrum is bounded by two parabolas. The proof is completely analogous to the
quantum case, see [15]. We recall that C(ν)

α denotes the αth normalized eigenvector of J

and consider a transformation of the spin vectors analogous to the transformation onto the
eigenbasis of J. Define

Definition 1. Tα ≡ ∑
µ C

µ
α sµ, and Qα ≡ T α · Tα, α = 0, . . . , N − 1.

The inverse transformation then yields

sµ =
∑

α

Cµ
α Tα µ = 1, . . . , N. (26)

Especially, T0 = S/
√

N since α = 0 corresponds to the eigenvector . The following lemma
follows directly from the definitions:

Lemma 4. N = ∑
µ(sµ)2 = ∑

α Qα = 1
N

S2 +
∑′

α Qα.

Then we obtain the following bounds.

Theorem 1.
j − jmin

N
S2 + jminN � H0 � j − jmaxi

N
S2 + jmaxiN. (27)

Proof. We rewrite the Hamilton function in the following form and conclude:

H0 =
∑
µναβ

JµνC
µ
α Cν

βT α · Tβ =
∑

β

jβQβ = j

N
S2 +

∑
β

′jβQβ

� j

N
S2 + jmin

∑
β

′Qβ

= j

N
S2 + jmin

(
N − 1

N
S2

)
= j − jmin

N
S2 + jminN (28)

using (26), the positivity of Qβ , and lemma 4. The other inequality follows analogously. �

We note that the proof does not depend on the dimension of spin space, but the optimal
energy bounds may depend on this dimension. The regular pentagon is an example of a
system where the above bounding parabolas are assumed by three-dimensional states, but not
by two-dimensional, i.e., coplanar states, see section 6.3.1.
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Next we will show that the above-defined bounding parabolas are assumed for systems
which admit coplanar S = 0 ground states. To this end we define the aforementioned umbrella
construction.

Theorem 2.

(i) Let s be a coplanar weakly symmetric state with S = 0 corresponding to an eigenvalue
j̃ of J and perpendicular to a unit vector n. Then the following family of states
ŝ(S), 0 � S � N has total spin length S:

ŝµ(S) =
√

1 − S2

N2
sµ +

S

N
n µ = 1, . . . , N. (29)

(ii) If, moreover, s is a ground state then ŝ(S) will be a relative ground state for all 0 � S � N .
In this case,

Emin(S) = j − jmin

N
S2 + jminN. (30)

(iii) The analogous case for s being a coplanar weakly symmetric relative anti-ground state
for S = 0: then ŝ(S) will be a relative anti-ground state and

Emax(S) = j − jmaxi

N
S2 + jmaxiN. (31)

Proof.

(i) Obviously, ŝ(S) is a state with total spin length S.

(ii) We obtain
∑

νJµν ŝν =
√

1 − S2

N 2 jminsµ + S
N

jn and H0(ŝ) = j−jmin

N
S2 + jminN , using∑

µsµ = S = . Since H0(ŝ) is identical with the lower bound of theorem 1, ŝ must be
a relative ground state.

(iii) This case is largely analogous, but jmin has to be replaced by jmaxi, since s has S = 0 and
cannot be the total anti-ground state . �

Systems which satisfy equation (30) will be called parabolic systems. Hence the essential
claim of theorem 2 is that systems with a coplanar S = 0 ground state will be parabolic.

We will now prove a theorem which can be viewed as the converse of theorem 2, in so
far it shows that coplanar ground states necessarily appear for parabolic systems, if certain
technical assumptions are satisfied. We expect that these assumptions hold under fairly general
conditions but will not dwell upon this question further.

Theorem 3. Consider a connected AF-system and let t �→ s(t) be a smooth curve
for 0 < t < ε of relative ground states such that the limits t → 0 of s(t) and its
derivatives up to second order exist, in particular dS

dt
(0) �= 0 for S2(t) ≡ (∑

µsµ(t)
)2

.
Moreover, let s(0) be a weakly symmetric ground state with S = 0 and assume parabolicity,
Emin(S) = j−jmin

N
S2 + Njmin, at least for the interval covered by 0 < t < ε.

Then s(0) will be coplanar.

Proof. We will indicate the limit t → 0 of a function of t by skipping the argument,
e.g. sµ ≡ sµ(0). Differentiation with respect to t will be indicated by an overdot. Since
sµ(t) · sµ(t) = 1, differentiation yields

sµ · ṡµ = 0 ṡµ · ṡµ + sµ · s̈µ = 0. (32)

We may assume that S(t) = S(t)e where e is a constant unit vector. Being a weakly stationary
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relative ground state, s(t) satisfies (18) for t > 0:

jµ(t) ≡
∑

ν

Jµνsν(t) = κµ(t)sµ(t) + χ(t)
∑

ν

sν(t) (33)

with the limit value S ≡ ∑
ν sν =  according to the assumptions of the theorem. But we

cannot a priori assume that χ(t) has a finite limit value for t → 0. Thus we solve (33) for
L(t) ≡ S(t)χ(t) and obtain

L(t) = jµ(t) · e − jµ(t) · sµ(t)e · sµ(t)

1 − (e · sµ(t))2
. (34)

If s is collinear, the proof is complete. If s is not collinear, we find some µ such that
(e · sµ(t))2 �= 1 for all 0 � t < ε. For this value of µ, (34) defines a smooth function of
t, independent of µ, with a finite limit value L ≡ L(0). Moreover, we can solve (33) for
κµ(t), µ = 1, . . . , N and obtain

κµ(t) =
∑

ν

Jµνsν(t) · sµ(t) − L(t)e · sµ(t). (35)

This shows that also κµ(t) is a smooth function of t and has a finite limit for t → 0. Since, by
assumption, s is weakly symmetric this limit must be κµ = jmin and hence L = 0. Therefore,

the smooth function χ(t) = L(t)

S(t)
for t > 0 has a finite limit χ = limt→∞ L̇(t)

Ṡ(t)
, employing

l’Hospital’s rule and that Ṡ(0) �= 0 by assumption.
Differentiating (33) twice and taking the limit t → 0 yields∑

ν

Jµν ṡν = κ̇µsµ + jminṡµ + χṠ (36)

and ∑
ν

Jµν s̈ν = κ̈µsµ + 2κ̇µṡµ + jmins̈µ + 2χ̇Ṡ + χS̈. (37)

Multipying (33), (36) and (37) with sµ and summing over µ yields

H =
∑
µν

Jµνsµ · sν =
∑

µ

κµ + χS2 = Njmin (38)

1

2
Ḣ =

∑
µν

Jµν ṡν · sµ =
∑

µ

κ̇µ =
∑

ν

jminsν · ṡν = 0 (39)

1

2
Ḧ =

∑
µν

Jµν(ṡν · ṡµ + sµ · s̈ν) (40)

= jmin

∑
µ

ṡ2
µ + χṠ2 +

∑
µ

κ̈µ + jmin

∑
µ

s̈µ · sµ (41)

=
∑

µ

κ̈µ + χṠ2 (42)

using (32) and (36). On the other hand,

H(t) =
∑

µ

κµ(t) + χ(t)S2(t) (43)

Ḣ (t) =
∑

µ

κ̇µ(t) + χ̇(t)S2(t) + 2χ(t)S(t)Ṡ(t) (44)

and
Ḧ =

∑
µ

κ̈µ + 2χṠ2. (45)
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Comparison with (42) yields
∑

µκ̈µ = 0 and

Ḧ = 2χṠ2. (46)

Hence, using the assumption of parabolicity and l’Hospital’s rule,

j − jmin

N
= dH

d(S2)

∣∣∣∣
t=0

= Ḧ

d2

dt2 S2
= 2χṠ2

2Ṡ2
= χ. (47)

Summing (36) over µ yields

j Ṡ =
∑

µ

κ̇µsµ + jminṠ + NχṠ (48)

whence, by (47) and the assumption Ṡ �= 0,∑
µ

κ̇µsµ = 0. (49)

We rewrite (36) in the form∑
ν

(Jµν − jminδµν − NχEµν)ṡν = κ̇µsµ (50)

where E is the projector onto J’s eigenvector  with constant entries Eµν = 1
N

. We expand
both sides of (50) into real eigenvectors of J and obtain

κ̇µsµ =
∑

α

′KαCµ
α (51)

ṡν =
∑

β

′ 1

jβ − j
KβC

µ
β +

1

N
Ṡ. (52)

Now
∑

µκ̇µsµ · ṡµ = 0, 1
N

Ṡ · ∑
µ κ̇µsµ = 0 and

∑
µCµ

α C
µ
β = δαβ imply

0 =
∑

µ

∑
α

′KαCµ
α ·

∑
β

′ 1

jβ − j
KβC

µ

β =
∑

α

′ K2
α

jα − j
. (53)

Since j > jα for α > 0 and connected AF-systems, this is only possible if all Kα = . Hence,
by (52) ṡν = 1

N
Ṡ and sν · 1

N
Ṡ = 0. Thus s is coplanar. �

An analogous theorem concerning Emax(S) and coplanar anti-ground states can be proved
similarly.

4. Extension of ground states

We consider spin systems with Jµν = 0 or J and which can thus essentially be characterized
by their graph � = (V, E). A sub-graph (representing a sub-system) �̃ = (Ṽ, Ẽ) is defined
by the conditions Ṽ ⊂ V, Ẽ ⊂ E and Ẽ ⊂ [Ṽ]2. Let

H̃0 = 2J
∑

(µ,ν)∈Ẽ
sµ · sν (54)

be the Hamiltonian of the subsystem. Let s be any state of � and s̃ be its restriction to �̃.
If s happens to be a ground state of �, s̃ need not be a ground state of �̃, but, of course,
H̃0(̃s) � Ẽmin.

The inverse problem is the extension problem. Given a ground state s̃ of �̃, can it be
extended to a ground state s of � (such that s̃ is the restriction of s)? In general, this will
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not be possible. For example, if �̃ is the graph of a dimer with ground state s̃ =↑↓, the
extension of s̃ to a global ground state is only possible for bi-partite systems. We have no
general theory describing the obstacles against extension (which could be called frustration
of higher order), but we can describe the typical situation where extension is possible. For an
analogous treatment in the quantum case, see [14].

The situation we have in mind is one where the graph of the spin system �1 is decomposed
into smaller graphs which are copies of some graph �2 in such a way that each edge lies in
exactly one of the copies. For example, an icosidodecahedron can be decomposed into 20
triangles with disjoint edges. We have local states by considering the ground states of the
copies of �2. But these local states must fit together in order make it possible to construct a
global ground state of �1. For the example of decomposition into triangles the condition of
fitting-together of local ground states is equivalent to the 3-colourability of the large system.
The icosidodecahedron happens to satisfy this condition and hence possesses a ground state
of the energy which is 20 times the ground state energy of the triangle. For general �2 the
colourability condition has to be replaced by the existence of a map from �1 to �2 which maps
edges onto edges. Such a map may be called a ‘graph homomorphism’.

A graph homomorphism h : �1 −→ �2 is a pair of maps h = (hV , hE ) such that
hV : V1 −→ V2, hE : E1 −→ E2 and {µ, ν} ∈ E1 implies hE {µ, ν} = {hV(µ), hV (ν)}. The
definition of a graph isomomorphism is analogous.

Proposition 1. Consider two spin systems with graphs �1 and �2 and the following properties:

(i) there exists a graph homomorphism h : �1 −→ �2,
(ii) there exists a decomposition into sub-graphs �1 = ⋃k

µ=1 �µ, which is a disjoint
decomposition with respect to edges,

(iii) the restriction of h to �µ, hµ : �µ −→ �2 is a graph isomorphism for each µ = 1, . . . , k.

Moreover, let s(2) : V2 −→ S2 be a ground state of �2.
Then s(1) ≡ hV ◦ s(2) will be a ground state of �1.

Proof. According to the disjoint decomposition of E1,H1 will be a sum of terms Hµ which
are each minimized by the state s(1). Hence s(1) is a ground state of �1. �

The above-mentioned construction of ground states for the icosidodecahedron, the
octahedron and the cuboctahedron follows the description given in this proposition. Other
examples show that the two given conditions of the proposition are essential. The
dodecahedron is 3-colourable but it cannot be decomposed into edge-disjoint triangles.
Actually its ground state energy is lower than that of the state obtained by the 3-colouring. A
simpler example is the bi-partite 3-chain which can be mapped by a graph homomorphism onto
the triangle but is not isomorphic to the triangle. On the other hand it is possible to connect
four triangles such that their edges are still disjoint but form a tetrahedron which cannot be
3-coloured. This is then a ‘higher order frustrated’ system with a ground state energy which
is larger than four times the ground state energy of a triangle.

5. Symmetric states

In this section, we will assume suitable symmetry properties of the spin system and
correspondingly consider the notion of ‘symmetric states’. We make use of some simple
concepts and results of group theory, which may be found in many textbooks, e.g. [16].

Let Jµν = 0 or J and consider the graph � = (V, E) characterizing the spin system.
Further let G denote the symmetry group of the graph �. Hence G consists of all permutations
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of V which map edges onto edges. G has a ‘natural’ representation by real N × N-matrices,
by permuting the standard basis of R

N in the same way as the spin sites µ ∈ V . We will
denote the N × N-matrix representing any symmetry g ∈ G by g and by G the set of all
N × N-matrices obtained in this way. Obviously,

Lemma 5. The adjacency matrix J commutes with all g ∈ G.

Hence

Lemma 6. The eigenspaces of J split into orthogonal direct sums of irreducible
subrepresentations of the natural representation of G.

The irreducible representations of the relevant groups are well known, see e.g. [16], and can
easily be associated with the different (subspaces of) eigenspaces of J.

For specific spin systems, e.g. magnetic molecules, the spin sites µ ∈ V are embedded
into the physical 3-space and the group G could also be identified with one of the point groups,
i.e. finite subgroups of O(3, R). There are only a finite number of possibilities, see e.g. [16],
3.1.2. and 3.1.3. The most interesting cases are

• the dihedral group Dn,
• the tetrahedral group T ,
• the octahedral group O,
• the icosahedral group Y ,

as well as the improper point groups attached to them.
In what follows, we make the following general assumption:

Assumption 1. All exchange parameters Jµν are 0 or J , and the group G operates transitively
on V .

The latter means that for each pair µ, ν ∈ V there is a permutation g ∈ G such that g(µ) = ν.
Hence the above assumption expresses the equivalence of all spin sites with respect to their
interaction.

A state s can be transformed in two different ways: either the unit vectors sµ can be
permuted according to a symmetry g ∈ G, or the whole configurations can be rotated/reflected
in spin space. Mathematically, this means that the two groups G and O(3, R) operate
independently on the set of states. If two matrices g ∈ G and R ∈ O(3, R) are given,
we define their action on a state s by matrix multiplication with s which is again considered
as an N × 3-matrix:

Definition 2. (R, g) • s ≡ Rsg−1.

The transformations R ∈ O(3, R) will also be referred to as ‘rotations/reflections in spin
space’.

We have the following obvious results:

Lemma 7. Let g ∈ G and R ∈ O(3, R) and s be a state. Then

(i) s and Rsg−1 have the same total spin length S,
(ii) If s is (weakly) stationary, then Rsg−1 is (weakly) stationary,

(iii) If s is weakly symmetric, then Rsg−1 is weakly symmetric,
(iv) if s is a (anti-) ground state, then Rsg−1 is a (anti-) ground state.
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Having defined the action of the product group O(3, R) × G on states, it is natural to
consider the corresponding subgroup leaving a given state invariant:

Definition 3. For any state s let Gs ≡ {(R, g) ∈ O(3, R) × G|Rsg−1 = s}. Gs is called the
symmetry group of s.

Definition 4. A state s is called symmetric if the projection onto the second factor π2 :
Gs −→ G is surjective, i.e. if for each g ∈ G there exists a rotation/reflection R ∈ O(3, R)

such that R−1sg = s.

One may thus say that for symmetric states s every permutation g ∈ G of the vectors sµ

can be compensated by a suitable rotation/reflection in spin space.
For example, if (V, E) is the graph of a regular N-polygon, the coplanar symmetric states

are in 1:1-correspondence to the roots of unity, zN
n = 1, namely

sµ = zµ
n = exp(iµn2π/N) n,µ = 1, . . . , N. (55)

Here G = DN , the dihedral group of order 2N .
We have the following:

Lemma 8. Let s
(i)

(µ) be a non-vanishing N ×3-matrix such that for all g ∈ G there exists some
R ∈ O(3, R) such that sg = Rs. Then, for some suitable λ ∈ R, λs will be a symmetric state.

Proof. It remains to show that λs(i)
µ will be unit vectors for all µ = 1, . . . , N . Fix some

indices µ, ν. Using assumption 1, we choose a g ∈ G such that (sg)µ = sν = Rsµ. Since
R ∈ O(3, R) the two vectors sν and sµ have the same length. Because µ, ν were arbitrarily
chosen, all vectors sµ have the same length, say λ−1, which completes the proof. �

If a state s is not collinear, then Rs = s implies R = 1. In this case for each g ∈ π2(Gs)

there exists a unique R ∈ O(3, R) such that R−1sg = s. We will write R = ρs(g). It is easily
shown that the map g �→ ρs(g) is a linear representation of the subgroup π2(Gs) ⊂ G. If s is
collinear we may uniquely fix R by choosing R ∈ {1,−1} and thus obtain a representation ρs

also in this case.
For the case of symmetric s we have π2(Gs) = G and hence ρs will be an n-dimensional

representation of G with n � 3.
In the case of a symmetric ground state it is thus necessary that the eigenspace of J

corresponding to the smallest eigenvalue jmin contains an irreducible representation of G of
dimension n � 3. If it does not, we can exclude symmetric ground states.

For practical purposes of constructing (anti-)ground states it would be desirable to invert
the process and to reconstruct s from a given n-dimensional subrepresentation ρ of the natural
representation of G, n � 3. We will now describe this procedure and consider, for sake
of simplicity, only the case n = 3. Let S be a three-dimensional subspace of R

N left
invariant by all g ∈ G and si

(µ), i = 1, 2, 3 a basis of S. It follows that the three vectors∑
µ gµ(ν)s

i
µ, i = 1, 2, 3 are linear combinations of the basis vectors, hence∑

µ

gµνs
i
µ =

∑
j

ρi
j (g)sj

ν (56)

or, in matrix notation, ρ(g)s = sg. Being a real representation of a finite group, ρ is
equivalent to an orthogonal representation, i.e. ρ̃(g) ≡ Tρ(g)T −1 is orthogonal with some
invertible 3 × 3-matrix T. It follows that

ρ̃(g)(T s) = (T s)g (57)
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which means that T s is a symmetric state with ρT s = ρ̃. Note that the orthogonality of the
representation is crucial in order to obtain a row (T s)(i)µ µ = 1, . . . , N of unit vectors, compare
lemma 7. Hence we have proved the following.

Proposition 2. Let ρ be a three-dimensional subrepresentation of the natural representation
of G. Then there exists a three-dimensional symmetrical state s such that ρs is equivalent
to ρ.

Further there holds

Proposition 3. Each stationary symmetric state s is weakly symmetric.

Proof. We will use a matrix notation and write κ ≡ diag(κ1, . . . , κN). Then condition
(16) for stationarity may be written as sJ = sκ . For g ∈ G we have κ̃ ≡ g−1κg =
diag(κg(1), . . . , κg(N)). We conclude sκg = sJg = sgJ = ρs(g)sJ = ρs(g)sκ =
sg(g−1κg) = ρs(g)s̃κ. Hence sκ = s̃κ , which is in components κµsµ = κg(µ)sµ whence κµ

is independent of µ (using assumption 1). �

The converse of proposition 3 is not true. There are ground states of the icosidodecahedron
which are weakly symmetric, but not symmetric, see section 6.5. The condition of stationarity
in proposition 3 can be replaced by another condition.

Definition 5. Let Gµ denote the subgroup of G leaving µ ∈ V fixed and G(µ) the matrix
group generated by its natural representation. A symmetric state s will be called isotropic if
ρs(G(µ)) contains at least one rotation with an angle α �= 0, π .

Lemma 9. If s is isotropic and ρs = ρs′ then sµ = ±s′
µ.

Proof. sµ is invariant under all rotations/reflections ρs(g), g ∈ G(µ). Since some of these
is a rotation with an angle α �= 0, π , the axis of rotation will be unique and ρs = ρs′ implies
sµ = ±s′

µ. �

Proposition 4. Each isotropic state is stationary, hence weakly symmetric.

Proof. Using the above matrix notation we obtain sJg = sgJ = ρs(g)sJ hence sJ is a
symmetric (not normalized) state with ρsJ = ρs. Using that s is isotropic and lemma 9 we
conclude (sJ)µ = ±λsµ, hence s is stationary, and, by proposition 3, weakly symmetric. �

6. Examples

We will mainly consider AF-systems and set J > 0 throughout this section if not mentioned
otherwise.

6.1. The general spin triangle

We consider spin systems with N = 3 and general coupling coefficients J1, J2 and J3. The
special symmetric case J1 = J2 = J3 is atypical and its properties are discussed later. Another
special case is the 3-chain with J1 = 0, J2 = J3, which is probably the simplest example of a
non-parabolic system. Its investigation will be left for the reader.

Let sν, ν = 1, 2, 3, be any spin configuration and consider the 3 × 3-matrix S with
coefficients

Sµν = sµ · sν . (58)
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Figure 1. The three-dimensional convex set P defined in (59) as seen from the view point
(4,−2,−2). The shape of its projection onto the plane perpendicular to (4,−2,−2) is essentially
identical with that shown in figure 2.

It is positive and its diagonal consists of 1’s. Conversely, any 3×3-matrix with these properties
is of the form (58). This follows from the spectral theorem. These matrices can be written in
the form

S =
1 w v

w 1 u

v u 1

 ≡ [u, v,w] (59)

where u, v,w are real numbers subject to the constraint

detS = 1 − (u2 + v2 + w2) + 2uvw � 0 and u2, v2, w2 � 1. (60)

Hence the set P of the matrices of the form (58) can be considered as a compact convex subset
of R

3. It has the form of an ‘inflated tetrahedron’, see figure 1. Since the map

π : P −→ R
2 (61)

π[u, v,w] ≡ (3 + 2(u + v + w), J1u + J2v + J3w) (62)

= (
S2(s), 1

2H0(s)
)

(63)

is affine, the set P2 ≡ π[P] of all possible values of the energy versus square of the total spin
will be a compact convex set too. To simplify the geometry we will assume J1 + J2 + J3 = 0.
Then P2 can be considered as the orthogonal projection of P onto a suitable plane. If we
introduce new coordinates in the u, v,w-space by

σ = u + v + w (64)

ε = J1u + J2v + J3w (65)

τ = (J2 − J3)u + (J3 − J1)v + (J1 − J2)w (66)

the orthogonal projection π is essentially the projection onto the σ, ε-plane. Hence the
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Figure 2. Energy ε versus square of total spin, S2, for the triangle with J1 = 0, J2 = 1, J3 = −1
according to (70). The broken lines represent the bounding parabolas of theorem 1.

boundary of P2 can be obtained by solving the two equations

detS = 0 (67)

∇ detS ·
J2 − J3

J3 − J1

J1 − J2

 = 0. (68)

The first equation (67) defines the boundary of P , the second one (68) is satisfied by those
points of the boundary of P which are orthogonally projected onto the boundary of P2. By
using computer algebra software it is straightforward to express (67) and (68) as equations
for σ, ε, τ and to eliminate τ between (67) and (68). Yet the result for the general case is too
complex to be reproduced here. We choose the special case

J1 = 0 J2 = 1 J3 = −1 (69)

and obtain the following equation for the boundary of P2

0 = S2(9 − 10S2 + S4)2 + (−27 + 288S2 + 18S4 − 24S6 + S8)ε2

− 8(3 + S2)2ε4 + 16ε6 (70)

where we have re-substituted S2−3
2 for σ . The actual boundary of P2 is only a part of the

family of curves defined by (70) and is shown in figure 2. Here we have an example where
the curves Emin(S) and Emax(S) can be explicitly calculated and are not parabolas, although
they are close to their bounding parabolas which are represented as broken lines in figure 2.
This is not in contradiction to theorem 2 since the ground state of this system is coplanar but
has S > 0.

We expect that similar figures also appear for the general system of N spins. Parabolic
systems are probably rare cases, some of which will be considered in the remaining subsections.

6.2. SN -symmetric systems

Recall that the N-pantahedron was defined as a system of N spins where each pair (µ, ν)

interacts with equal strength J > 0. These systems serve mainly as exactly solvable model
examples for the sake of illustration, but the dimer, the triangle and the tetrahedron are also of
experimental relevance [17–19]. The symmetry group of the N-pantahedron is obviously the
group SN of all permutations of N spin sites.

By completing squares the Hamiltonian can be written as

H0 = J (S2 − N). (71)

Since the energy depends only on S, each state is a relative (anti-)ground state with

Emin(S) = Emax(S) = J (S2 − N). (72)
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For S = 0 there exist symmetrical ground states only if N � 4. These are the obvious
dimer, triangle and tetrahedron configurations in spin space. The dimension dim of the
irreducible representations of SN is given by the number of standard Young tableaus (see [16])
and hence dim = 1 or dim � N − 1. The one-dimensional representations are either the trivial
one corresponding to the total anti-ground state or the one attaching to each permutation its
sign, which is not generated by a symmetric state. Thus there are no symmetrical ground
states for N > 4. For example, a cyclic permutation of three spins leaving two other spins
invariant cannot be compensated by a reflection/rotation in spin space.

The coplanar N-polygon configuration in spin space does however define a weakly
symmetric ground state with κµ = −1. Hence, the construction of theorem 1 yields
symmetrical relative ground states ŝ(S). We will check our equation (30) for this case. Let E

denote the N × N-matrix with Eµν = 1/N for all µ, ν. It is the matrix of the projector onto
the one-dimensional subspace spanned by the vector  = 1√

N
(1, 1, . . . , 1). The adjacency

matrix for the N-pantahedron is J = J (NE−1). Hence its eigenvalues are j = J (N −1) with
eigenvector  and jmin = −J with the (N − 1)-dimensional eigenspace of vectors orthogonal
to . Thus jmin = jmaxi and the two functions Emin(S) and Emax(S) coincide in accordance
with what has been said above.

6.3. DN -symmetric systems

6.3.1. The N-polygon. The N-polygon has the dihedral group DN as symmetry group. We
have already mentioned the set of S = 0, stationary, coplanar, symmetric states s given by

sµ = zµ
n µ = 0, . . . , N − 1 (73)

where zn = exp(in2π/N), n = 1, . . . , N, is a root of unity, zN
n = 1. Indeed, these states are

the complex eigenvectors of the corresponding adjacency matrix

J = J



0 1 0 . . . . . . 0 1
1 0 1 0 . . . . . . 0
0 1 0 1 0 . . . 0
...

0 . . . . . . 0 1 0 1
1 0 . . . . . . 0 1 0


. (74)

The eigenvalues are obtained by

(Js)µ = J
(
zµ+1
n + zµ−1

n

) = 2J cos(2πn/N)sµ (75)

and the corresponding energies are

En = 2JN cos(2πn/N) n = 0, . . . , N − 1. (76)

It follows that

Emin = Njmin =
{

EN/2 = −2JN for N even

E(N−1)/2 = 2JN cos(π(N − 1)/N) for N odd
(77)

and

Emax = E0 = Nj = 2NJ. (78)

This follows since the bounds of lemma 1 are attained by these states. For N = 5 the ground
state of the pentagon may be visualized as a pentagram in spin space and analogously for other
odd N.
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Figure 3. The shaded region represents the spectrum E versus S2 of coplanar states of the pentagon
as determined by numerical methods. The straight lines are the boundaries of the full spectrum.
Also a part of the boundary of the coplanar spectrum which can be analytically calculated is
displayed.

Moreover,

Emax(0) = E1 = Njmaxi = 2NJ cos(2π/N). (79)

The relative ground states of theorem 1 have energies

Emin(S) =
{

2J
(
2 S2

N
− N

)
for N even

2J
((

1 − cos
(
π N−1

N

))
S2

N
+ N cos

(
π N−1

N

))
for N odd

(80)

and

Emax(S) = 2J

(
(1 − cos(2π/N)

S2

N
+ N cos(2π/N)

)
. (81)

Both parabolas meet in the anti-ground state with Emax = 2JN for S = N .

6.3.2. Coplanar states of the pentagon. The regular pentagon as a special case dealt with
in the preceding subsection assumes its bounding parabolas. However, the extremal energies
Emin(S) and Emax(S) can only be realized by non-coplanar states, except for S = 0 and S = 5.
This has not been rigorously proved but shown by numerical evidence, see figure 3. The
spectrum E versus S2 realized by coplanar states is a subset of the full spectrum with concave
boundaries E

coplanar
min (S) and E

coplanar
max (S).

The permutation of spin sites (0 ↔ 0, 1 → 2 → 4 → 3 → 1) leaves the Hamiltonian
invariant and maps relative ground states onto anti-ground states, hence E

coplanar
min (S) =

S2 − 5 − E
coplanar
max (S). The (anti-) ground state with S = 1 and E = −7 (resp. E = 3)

is especially remarkable: its state vectors sµ occupy the vertices of a regular hexagon leaving
one vertex free. The anti-ground state

(
E

coplanar
max (1) = 3

)
satisfies equation (18) with χ = 0,

hence it is a stationary state, not only weakly stationary as other relative anti-ground states.
Actually, E

coplanar
max has a local minimum at S = 1, see figure 3. For axisymmetric weakly

stationary states in the neighbourhood of the hexagonal state, equation (18) can be solved
analytically by using computer algebra software and hence E and S2 can be expressed as
functions of a common parameter, although of forbidding complexity. The resulting curve
turns out to be a part of the upper boundary of the coplanar spectrum and is displayed in figure 3,
as well as the corresponding lower boundary part.

6.3.3. The pentagonal star. We obtain the pentagonal star (N = 6) by joining the five
vertices of the pentagon with its midpoint, see figure 4. This system has D5 symmetry, but it
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Figure 4. Pentagonal star as an example of a spin system without coplanar ground states.

Figure 5. Three-dimensional ground state of the pentagonal star: The vertices correspond to six
unit vectors in spin space and the edges correspond to the ten bonds of the pentagonal star of
figure 4, see the remarks after (10).

is not D5-symmetric in our sense, since D5 does not operate transitively on the six spin sites.
Nevertheless, we will discuss this example since it has the interesting property that its ground
states are not coplanar and Emin(S),Emax(S) are only piecewise parabolic.

If we add to the ten edges of the pentagonal star the five edges of the corresponding
pentagram we obtain the 15 edges of the 6-pantahedron. Hence its Hamiltonian reads

H = S2 − 6 − H5 (82)

where H5 is the Hamiltonian of the pentagram, which is the same as that for the pentagon, up
to a suitable permutation of the spin sites. This shows that the configurations minimizing H
for a given S are exactly those which maximize H5, analogously for Emax(S). The maximal
values for H5 are given by the parabola, compare (81),

E(5)
max(S5) = 2(1 − cos(2π/5))

5
S2

5 + 10 cos(2π/5) (83)

where S5 is the length of the total spin of the five vertices of the pentagon. Here S5 has to
be chosen maximal for given S, which means that S5 = S + 1 for 0 � S � 4 and S5 = 5 for
4 � S � 6. This yields

Emin(S) =
{

5+
√

5
10 (S − 4)(S + 1 +

√
5) if 0 � S � 4

S2 − 16 if 4 � S � 6.
(84)

Hence the total ground state is attained not for S = 0, but for S = 3−√
5

2 = 0.381 966 . . .

with Emin = −5 − 2
√

5 = −9.472 14 . . . . The corresponding spin configuration is shown in
figure 5.
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It remains to show that no other, coplanar ground state exists. Employing the numerical
result of the preceding subsection for the pentagon, Ecoplanar

max (S) < Emax(S) for 0 < S < 5, it
is easily shown that all coplanar states with S = 3−√

5
2 have an energy larger than Emin. The

minimal energy for all coplanar states appears to be E
coplanar
min = −9, realized by a hexagonal

ground state with S = 0, but we do not yet have a rigorous proof for this claim.
Analogously one can show that

Emax(S) =
{

5−√
5

10 (S + 4)(S − 1 +
√

5) if 1 � S � 6

S2 − 16 + 5(1+
√

5)

2 if 0 � S � 1.
(85)

6.4. O-symmetric systems

6.4.1. The cube. As already mentioned the cube allows a bi-partition and hence possesses a
ground state of the form

sµ = (−1)µe µ = 1, . . . , 8 (86)

if the vertices are suitably labelled. From this we obtain relative ground states with

Emin(S) = J
(

3
4S2 − 24

)
(87)

since j = 3J, jmin = −3J . Apart from j and jmin the other eigenvalues of J are ±J with
threefold degeneracy, respectively. The corresponding eigenspaces carry two inequivalent
irreducible representations of O, called F1, F2, see [16]. According to the considerations
in section 5 we may conjecture that these two representations are generated by stationary,
symmetric, non-coplanar states.

Indeed, this can be directly verified for the following states: let rµ,µ = 1, . . . , 8 denote
the unit vectors pointing to the vertices of the cube. The states

s(1)
µ ≡ rµ µ = 1, . . . , 8 (88)

and

s(−1)
µ ≡ (−1)µrµ µ = 1, . . . , 8 (89)

have the desired properties. They are easily visualized: s(1) is just the ‘cube in spin space’
and s(−1) the tetrahedron where each of the four distinct spin vectors is attached to pairs of
vertices of the cube connected by space diagonals. s(1) is the anti-ground state for S = 0 with
energy Emax(0) = 8J . Since it is not coplanar, theorem 1 is not directly applicable. However,
it is possible to project the cube s(1) onto a square and, in a second step, to enlarge the square
to a square of unit vectors. Since these are linear transformations, the resulting coplanar state
s(1)′ is weakly symmetric and has the same energy as before, namely 8J = Emax(0). Now
theorem 1 yields Emax(S) = J

(
1
4S2 + 8

)
.

6.4.2. The octahedron. As noted in [9], the octahedron can be decomposed into four triangles
with disjoint edges and it is 3-colourable. Hence it has coplanar ground states with S = 0
which are obtained by extensions of the local ground states of the triangles. Since j = 4J

and jmin = −2J we again obtain the RBS-parabola

Emin(S) = J (S2 − 12). (90)

The eigenspace of J corresponding to jmin is two dimensional and carries a real, irreducible
representation of O. This corresponds to the one-dimensional complex eigenspace of J
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Figure 6. The cuboctahedron (shaded figure) is obtained by joining the midpoints of the cube’s
edges with their nearest neighbours.

spanned by the vector

sµ = zn(µ) µ = 1, . . . , 6 (91)

where the

zn ≡ exp(in2π/3) n = 0, 1, 2 (92)

are the third roots of unity and µ �→ n(µ) denotes any 3-colouring of the octahedron. It
follows that the state s is symmetrical.

The remaining three-dimensional eigenspace of J with eigenvalue jmaxi = 0 carries the
three-dimensional self-representation of O and hence corresponds to the symmetric anti-
ground state with S = 0 which can be visualized as a octahedron in spin space. Its energy
is Emax = 0. Again, as in the case of the cube, there is a weakly symmetric coplanar state
with the same energy and theorem 1 yields Emax(S) = 2J

3 S2. This state has the form of a (not
necessarily regular) hexagon such that opposing vertices of the octahedron in real space are
mapped onto opposing vertices of the hexagon in spin space.

The above RBS energy bounds can also be obtained more simply: since H0 =
S2 − (

S2
16 + S2

25 + S2
34

)
, where Sij ≡ Si + Sj and J = 1, the minimal energy Emin(S)

is obtained for Sij = 2 as Emin(S) = S2 − 12. Similarly the energy is maximal for Sij = 1
3S

which yields Emax(S) = S2
(
1 − 3

9

) = 2
3S2.

6.4.3. The cuboctahedron. The cuboctahedron is the quasi-regular polyhedron obtained
by joining the midpoints of the cube’s edges with their nearest neighbours, see [7, 8], and
figure 6.

It can be decomposed into eight triangles with disjoint edges and it is 3-colourable. Hence
there is a coplanar ground state with S = 0 giving rise to an RBS-parabola

Emin(S) = J
(

1
2S2 − 24

)
(93)

since j = 4 and jmin = −2. The eigenvalues of J together with their degeneracy and
irreducible representations of O are summarized in table 1.

This has been calculated by using the formula connecting the characters with the
multiplicity of irreducible representations, c.f. [16], 4.2.31b. From this table it is obvious
that the trivial irreducible representation A1 corresponds to the total anti-ground state E is
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Figure 7. A stationary state of the cuboctahedron with energy E = 0. The spin vectors sµ are
shown as small arrows attached to vertices of the cuboctahedron.

Table 1. Eigenvalues jn of the adjacency matrix J of the cuboctahedron (first column) together
with their degeneracy (second column). In the third column the irreducible representations of O
are indicated which occur in the corresponding eigenspaces. The nomenclature A1, A2, E, F1, F2
follows [16].

Irreducible
jn/J Degeneracy representations of O

−2 5 E ⊕ F2

0 3 F2

2 3 F1

4 1 A1

spanned by the complex eigenvector of the coplanar ground state and the self-representation F1

corresponds to the cuboctahedron in spin space with the energy Emax(0) = 12jmaxi = 24J . It
remains to identify the symmetrical states which generate the two three-dimensional irreducible
representations F2 corresponding to the eigenvalues 0 and −2 of J.

The vertex vectors rµ,µ = 1, . . . , 12 of the cuboctahedron may be represented, up to
normalization, by integer 3-vectors with components −1, 0, 1 and exactly one 0-component.
Then a state vector sµ may be defined by the following rule: invert the first component of
rµ after 0 and set the other two components to 0. Here ‘after’ is understood cyclically, e.g.
(1, 1, 0) �→ (−1, 0, 0). Thus we obtain a state, see figure 7 where the spins sµ of adjacent
vertices are orthogonal. Indeed, this state corresponds to the three-dimensional eigenspace of
J with eigenvalue 0 which is transformed under O according to F2.

A second state s′ is obtained by a permutation of the rµ. Each rµ is mapped onto that
vertex where the above-defined state vector sµ points to

s′
µ ≡ 2sµ − rµ (not normalized). (94)

Alternatively, s′
µ is obtained from rµ by the following rule: invert the first component of

rµ after 0 and leave the other unchanged. For example, (1, 1, 0) �→ (−1, 1, 0). Also this
state generates a three-dimensional subspace of the eigenspace of J with jmin = −2J which
transforms under O according to F2.
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Figure 8. A ground state of the cuboctahedron formed by four stars of David.

Table 2. Eigenvalues jn of the adjacency matrix J of the icosahedron (first column) together
with their degeneracy (second column). In the third column the irreducible representations of Y
are indicated which occur in the corresponding eigenspaces. The nomenclature A,F1, F2,G,H

follows [16].

Irreducible
jn/J Degeneracy representations of Y

−√
5 3 F2

−1 5 H√
5 3 F1

5 1 A

Geometrically, s′ is a figure in spin space formed by four stars of David, see figure 8.
Thus the cuboctahedron has a coplanar ground state with S = 0 as well as a non-coplanar one
with the same energy.

6.5. Y-symmetrical systems

We will consider the two remaining Platonic solids as well as the quasi-regular
icosidodecahedron and again calculate the decomposition of the eigenspaces of the adjacency
matrix J into Y-irreducible subspaces for these three cases. As in the case of O-symmetric
systems, the eigenvalue jmaxi always corresponds to the three-dimensional self-representation
of Y called F1. However, we have not found coplanar states realizing jmaxi and hence the
question whether Emax(S) will be a parabola remains open.

The situation for ground states is different from the previous examples: for the icosahedron
and the dodecahedron we find symmetric ground states with S = 0 corresponding to the three-
dimensional irreducible representation F2 of Y , but no coplanar ones (see tables 2 and 3).
Moreover, numerical calculations yield the results

Ecoplanar
min ≈ −43.0614 . . .J > Emin = −20

√
5J for the dodecahedron (95)

Ecoplanar
min ≈ −24J > Emin = −12

√
5J for the icosahedron. (96)

Hence we conjecture that there are no coplanar ground states and hence, according to
theorem 3, Emin(S) will not be an exact parabola. Of course, even overwhelming numerical
evidence cannot be considered as a rigorous proof. We can only strictly exclude symmetric
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Table 3. Eigenvalues jn of the adjacency matrix J of the dodecahedron (first column) together
with their degeneracy (second column). In the third column the irreducible representations of Y
are indicated which occur in the corresponding eigenspaces. The nomenclature A,F1, F2,G,H

follows [16].

Irreducible
jn/J Degeneracy representations of Y

−√
5 3 F2

−2 4 G
0 4 G
1 5 H√

5 3 F1

3 1 A

Table 4. Eigenvalues jn of the adjacency matrix J of the icosidodecahedron (first column) together
with their degeneracy (second column). In the third column the irreducible representations of Y
are indicated which occur in the corresponding eigenspaces. The nomenclature A,F1, F2,G,H

follows [16].

Irreducible
jn/J Degeneracy representations of Y

−2 10 H ⊕ H

1 − √
5 3 F2

−1 4 G
1 4 G
2 5 H

1 +
√

5 3 F1

4 1 A

coplanar ground states, since there are no two-dimensional irreducible representations of Y .
This is in accordance with proposition 4 and the fact that the recently discovered S = 0 ground
states of the icosidodecahedron [9] are coplanar and weakly symmetric, but not symmetric
(see table 4).

For the two Y-symmetrical Platonic solids we will investigate more closely the three-
dimensional geometry of the ground states. By numerical simulation of a heat bath at zero
temperature, Schröder [20] has found the angles between adjacent spins to be αI ≈ 116.6◦

for the icosahedron and αD ≈ 138.2◦ for the dodecahedron. From the knowledge of the
corresponding irreducible subrepresentation of the natural representation of Y in R

N we
can now exactly determine the symmetric ground state, see proposition 2. It turns out that
these states are well-known stellated geometrical structures, called ‘great icosahedron’ for the
ground state of the icosahedron and ‘great stellated dodecahedron’ for the ground state of the
dodecahedron, see [7, 8]. Thus the angles between adjacent spins are just the angles between
neighbouring vertices of these stellated structures and hence have the exact values

αI = arccos
(− √

5
5

)
αD = arccos

(− √
5

3

)
(97)

in agreement with the numerical findings of [20].

7. Summary

We have tried to give a systematic survey of the properties of (relative) ground states of
classical Heisenberg spin systems with particular emphasis on symmetric systems. Further
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Table 5. Summary of some properties of ground states for the considered examples. Generally,
we cannot exclude the existence of other types of ground states not listed in the table.

Example Section Ground state characteristics Parabolicity

General triangle 6.1 Coplanar, S > 0 No
N-Pantahedron 6.2 Any S = 0 state Yes
N-polygon 6.3.1 Symmetric, coplanar, S = 0 Yes
Pentagonal star 6.3.3 Non-coplanar, S > 0 No
Cube 6.4.1 Collinear, S = 0 Yes
Octahedron 6.4.2 Coplanar, S = 0 Yes
Cuboctahedron 6.4.3 Coplanar, non-coplanar, both S = 0 Yes
Icosahedron 6.5 Symmetric, non-coplanar, S = 0 Probably no
Dodecahedron 6.5 Symmetric, non-coplanar, S = 0 Probably no
Icosidodecahedron 6.5 Coplanar, S = 0 Yes

we have devised various methods of ground state construction, e.g. extension of local ground
states, construction of symmetric ground states from irreducible representations of the system’s
symmetry group, and the construction of relative (anti-) ground states from coplanar ground
states with S = 0. The latter procedure yields upper and lower parabolas as the boundaries
of the S-resolved energy spectrum. Thus we have a sufficient condition for a system to be
parabolic. Moreover, under certain assumptions, this condition can also be proved to be
necessary. Some properties of the considered examples are summarized in table 5.

The above issues are also relevant for the quantum theory of Heisenberg spin systems. It
has been shown for various cases [10, 21] that the shape of the S-resolved energy spectrum
of the quantum system is very well approximated by the curves Emin(S) and Emax(S) of the
corresponding classical system, if only the individual spin quantum number s exceeds some
moderate value, say s = 2. Hence one can predict semi-quantitative features of the quantum
spectrum if one knows the classical spectrum and s � 2.

For some quantum systems, such as the icosidodecahedron with s = 5/2, where the
diagonalization of Heisenberg Hamiltonian is totally impractical, approximation methods such
as the density matrix renormalization group method (DMRG) are currently able to provide
estimates for the lower boundary of the eigenvalue spectrum. In fact, for the icosidodecahedron
the estimates [22] are in very good quantitative agreement with the lower boundary of the
parabolic spectrum of the classical system. This agreement suggests that the DMRG results
are also close to those for the quantum system with s = 5/2. For other classical systems with
the same symmetry group Y , namely the dodecahedron and the icosahedron we expect non-
parabolicity, although the corresponding quantum systems may exhibit approximate rotational
bands.

In this sense our results and case studies are to a great extent relevant also for real, quantum
spin systems.
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